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Species distribution models (SDMs) relate species information to environmental
conditions to predict potential species distributions. The majority of SDMs are static,
relating species presence information to long-term average environmental conditions.
The resulting temporal mismatch between species information and environmental
conditions can increase model inference’s uncertainty. For SDMs to capture the dynamic
species-environment relationships and predict near-real-time habitat suitability, species
information needs to be spatiotemporally matched with environmental conditions
contemporaneous to the species’ presence (dynamic SDMs). Implementing dynamic
SDMs in the marine realm is highly challenging, particularly due to species and
environmental data paucity and spatiotemporally biases. Here, we implemented
presence-only dynamic SDMs for four migratory baleen whale species in the Southern
Ocean (SO): Antarctic minke, Antarctic blue, fin, and humpback whales. Sightings
were spatiotemporally matched with their respective daily environmental predictors.
Background information was sampled daily to describe the dynamic environmental
conditions in the highly dynamic SO. We corrected for spatial sampling bias by sampling
background information respective to the seasonal research efforts. Independent model
evaluation was performed on spatial and temporal cross-validation. We predicted the
circumantarctic year-round habitat suitability of each species. Daily predictions were
also summarized into bi-weekly and monthly habitat suitability. We identified important
predictors and species suitability responses to environmental changes. Our results
support the propitious use of dynamic SDMs to fill species information gaps and
improve conservation planning strategies. Near-real-time predictions can be used for
dynamic ocean management, e.g., to examine the overlap between habitat suitability
and human activities. Nevertheless, the inevitable spatiotemporal biases in sighting
data from the SO call for the need for improving sampling effort in the SO and using
alternative data sources (e.g., passive acoustic monitoring) in future SDMs. We further
discuss challenges of calibrating dynamic SDMs on baleen whale species in the SO,
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with a particular focus on spatiotemporal sampling bias issues and how background
information should be sampled in presence-only dynamic SDMs. We also highlight the
need to integrate visual and acoustic data in future SDMs on baleen whales for better
coverage of environmental conditions suitable for the species and avoid constraints of
using either data type alone.

Keywords: dynamic species distribution models, Maxent, Southern Ocean, species distribution models (SDMs),
Antarctic blue whales, Antarctic minke whales, fin whales, humpback whales

INTRODUCTION

Spatiotemporal information on marine species distributions
is essential for strategic conservation planning and dynamic
management (Guisan et al., 2013; Hazen et al., 2017). However,
the availability of high-quality, unbiased data at appropriate
spatial and temporal resolution is challenging in many situations,
especially over large spatial scales and in remote regions
(Rondinini et al., 2006; Hortal et al., 2015; Menegotto
and Rangel, 2018). Particularly, this is evident for whales
due to their imperfect detectability and the high logistic,
environmental, and financial constraints (Kaschner et al.,
2006; Bamford et al., 2020). Failing to obtain unbiased data
can misdirect the globally limited conservation resources and
compromise assessments of climate change’s potential impacts
on these species (Rondinini et al., 2006; Doney et al., 2012;
Jewell et al., 2012).

Species distribution models (SDMs) are powerful tools that fit
species’ niches by relating species information to environmental
conditions to predict its potential distribution and describe
the relationships between species and environment (Phillips
et al., 2006; Elith and Leathwick, 2009). Robust SDMs are
very propitious to fill spatial gaps in species information and
improve conservation management and planning strategies
(Guisan et al., 2013). The majority of SDMs are static, relating
species information to long-term averages of environmental
conditions; e.g., WorldClim (Fick and Hijmans, 2017) and
Bio-ORACLE (Assis et al., 2018), that may not at all be
concomitant to the respective occurrence (El-Gabbas et al.,
2021a). Static models do not consider seasonal variability of
species suitability (e.g., migration) and implicitly assume that
long-term environmental averages are suitable habitat descriptors
through time; i.e., locations with species detections always
represent suitable habitats (Bateman et al., 2012; El-Gabbas
et al., 2021a). A temporal mismatch between species sightings
and environmental conditions can cause misinterpretations in
model inferences (Scales et al., 2017a; Abrahms et al., 2019).
Although static SDM applications were shown as effective tools
for conservation planning in many terrestrial settings (Guisan
et al., 2013), they can neither capture the dynamics of the
environment and species distribution nor predict near-real-time
species distribution. In highly dynamic marine environments,
particularly polar areas characterized by the seasonal presence of
sea ice, static models can only provide a virtual representation
(in time) of species suitability for the period over which the
model is calibrated.

One approach to model seasonality of species distribution is
calibrating multiple seasonal (or monthly) static models. For each
season, species sightings and environmental conditions of only
this season are used to predict habitat suitability in the respective
season (e.g., Gilles et al., 2016). However, seasonal models do
not consider interannual variability and only represent a fraction
of species’ niches; i.e., they cannot be used for generalization.
This can result in truncated or biased species-environment
relationships (Thuiller et al., 2004). Also, they ignore potentially
valid information from other seasons.

For SDMs to be truly dynamic, i.e., capturing the dynamic
species-environment relationships and predicting habitat
suitability both in time and space, year-round species
information needs to be spatiotemporally matched with
environmental conditions contemporaneous to the species
(Bateman et al., 2012; Hazen et al., 2017; Abrahms et al., 2019).
Such dynamic models can consider daily up to climatic variability
and were shown to better estimate habitat suitability with high
accuracy than static models (Reside et al., 2010; Bateman et al.,
2012; Milanesi et al., 2020). Dynamic models are advantageous
to static models for predicting habitat suitability of mobile
species at high temporal resolution, or when high temporal
variability of environmental conditions exist (Reside et al.,
2010), thus they are particularly useful for (a near-real-time)
dynamic ocean management (Maxwell et al., 2015). Further,
dynamic models were shown to be more robust than static
models when aiming to predict habitat suitability at monthly or
seasonal timescales: fine-scale (e.g., daily) temporal predictions
can be averaged into seasonal or climatological suitability
(Scales et al., 2017a).

Dynamic SDMs are particularly valuable for studying niche
preferences of highly mobile marine species (Fernandez et al.,
2017; Scales et al., 2017b; Abrahms et al., 2019), especially
for species recovering from previous significant population
reduction. Marine ecosystems are highly dynamic and exhibit
big environmental changes and high variation in food availability
over short timescales (Fernandez et al., 2017), and many
cetacean species respond to these ephemeral changes by changing
their distribution (Redfern et al., 2006). Nevertheless, applying
dynamic marine SDMs at large spatial scales is challenging
due to the unavailability of sufficient species and environment
data necessary to calibrate these models (El-Gabbas et al.,
2021a). Spatiotemporal information on whale distribution and
habitat in the highly remote Southern Ocean (SO) is patchy
and seldom available at a sufficient resolution and extent. The
seasonal existence of sea ice hampers human access to most
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of the SO during winter and causes a high temporal bias in
species data toward austral summer (Scheidat et al., 2011; El-
Gabbas et al., 2021a). Whale distribution data in the SO are
spatially biased toward repetitive navigational routes (e.g., to and
from fixed research stations), easy-access and ice-free regions,
or areas of particular interest (e.g., the Antarctic Peninsula)
(Bombosch et al., 2014; Bamford et al., 2020; El-Gabbas et al.,
2021a). Supplementary Figure 1 shows spatiotemporal biases
in available baleen whale sightings in the SO. Further, some
environmental predictors known to affect whale distribution
are either unavailable at a large spatiotemporal scale (e.g.,
krill abundance), restricted to the water surface (e.g., water
temperature), highly patchy in space and limited in time
(e.g., chlorophyll-a), or became available only relatively recently
(e.g., no daily sea ice data before 2002) (El-Gabbas et al.,
2021a). This prohibits using some important predictors or
relatively old species sightings in dynamic SDMs in the SO.
In addition to the paucity of species and environmental data,
other methodological concerns regarding fitting and evaluating
dynamic models are challenging. This includes, for example,
the need for (spatiotemporal) independent datasets for model
evaluation, how to consider spatiotemporal biases, and how
to sample background information in situations where only
presence-only information is available.

In this paper, we implemented dynamic presence-only SDMs
on four migratory baleen whale species in the SO: Antarctic
minke whales (AMWs, Balaenoptera bonaerensis); Antarctic
blue whales (ABWs, B. musculus intermedia); fin whales
(FWs, B. physalus); and humpback whales (HWs, Megaptera
novaeangliae). The four species represent a variable quantity
of available data, conservation status, and population depletion
during, and recovery rates since the cessation of, the commercial
whaling era. Circumantarctic visual sightings (2002–2019) were
collated from biodiversity data repositories and dedicated
surveys. We considered sighting data as presence-only data, as
they are generally opportunistic and come without information
on sampling design or efforts. We implemented dynamic SDMs
using Maxent software (Phillips et al., 2006), one of a few
SDM methods suitable to deal with presence-only data (Renner
et al., 2015). Presence-only sightings were spatiotemporally
matched with their respective daily environmental predictors.
As background information required to calibrate Maxent does
not have a time attribute, we prepared intensive daily sampled
background information, describing the dynamic environmental
conditions and their possible combinations in the SO. Although
the well-recognized crucial role of these baleen whale species
in the Antarctic ecosystem and the potential impacts of climate
change (e.g., sea ice shrinkage and water warming) on them
(Tulloch et al., 2019), information on their spatiotemporal
distribution and niche preference in the SO represents a research
gap, compared to other oceans (but see; e.g., Bombosch et al.,
2014; El-Gabbas et al., 2021a). This research aimed to fill this
research gap by providing year-round, daily circumantarctic
habitat suitability of these species and identify important
ecological factors affecting their dynamic distribution in the
SO. Finally, we discuss challenges of implementing dynamic
presence-only SDMs on baleen whales in the SO.

MATERIALS AND METHODS

Species Data
Species visual sightings were collated from different sources: the
Global Biodiversity Information Facility,1 the Ocean Biodiversity
Information System (OBIS, 2018), OBIS-SEAMAP (Halpin et al.,
2009), SO GLOBEC (2001–2002),2 SOWER cruises (2002–2010),3

RV Polarstern expeditions,4 and PANGAEA data repository.5

More details are presented in El-Gabbas et al. (2021a). Only
sightings that temporally match dynamic predictors availability
were considered (2002–2019): a total of 9,495 sightings, 3,597
for AMWs; 192 for ABWs; 730 for FWs; and 4,976 for HWs.
The spatiotemporal distribution of species sightings is shown
in the Supporting Information (Supplementary Figures 3, 11,
19, 27). Note that figures in the Supporting Information are
grouped by species (AMWs: Supplementary Figures 3–10;
ABWs: Supplementary Figures 11–18; FWs: Supplementary
Figures 19–26; HWs: Supplementary Figures 27–34).

Environmental Data
The study area was defined as the region south of the
climatological location of the SO Polar Front (Orsi et al., 1995)
to the continental edge. We used nine predictors, three static
and six dynamic, all projected onto a 10 × 10 km equal-area
grid. Static predictors are bathymetry, distance to 1,000 m isobath
(serving as a proxy for the location of the continental shelf break),
and distance to coast/ice shelf edge, all derived from GEBCO
(Weatherall et al., 2015). Since slope was the least important
predictor in previous static models on these species (El-Gabbas
et al., 2021a), we did not consider it here.

Six daily dynamic predictors were prepared, describing
the year-round dynamic environment in the SO. Sea ice
concentration (SIC) was downloaded at a resolution of 6.25 km
from Spreen et al. (2008). We calculated daily distance to the
sea ice edge (SIE), where the SIE was estimated as the largest
polygon that includes Antarctica with SIC > 15% (Parkinson,
2002). Coastal and open ocean polynyas are known to form
important habitats for baleen whales in the SO, particularly for
over-wintering, as they provide plenty of food resources (e.g.,
krill) and access to open water for breathing (Ainley et al., 2007;
Van Opzeeland et al., 2013). We identified daily polynyas (areas
with SIC ≤ 15% south of the SIE) by two rules: ≥ 20 connected
cells (>2,000 km2) and persistent for at least 5 consecutive days
(2 days before and 2 days after each selected day). The closest
distance from each cell to daily SIE was calculated following
Ainley et al. (2004), but with special consideration of polynyas:
zero value at spatial intersections with the SIE or polynyas
border; positive values north of the SIE; and negative south of it,
with an exception for cells located within polynyas which were
given positive values (Supplementary Figure 2A). Further, we
calculated daily lagged SIC variance throughout the 14 preceding

1https://www.gbif.org/
2http://ccpo.odu.edu/Research/globec_menu.html
3https://iwc.int/sower
4https://www.awi.de/en/expedition/research-vessel-and-cutter/polarstern.html
5https://pangaea.de/
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days, following Bombosch et al. (2014). Due to the lack of sea
ice data before mid-2002, we limited the preparation of other
dynamic predictors to daily data from 2002 to 2019.

Daily sea surface temperature (SST) and sea surface height
(SSH) data were obtained at 0.25◦ resolution from Schlax
et al. (2007) and Copernicus,6 respectively. We used two
predictors derived from SSH data: absolute dynamic topography
to represent SSH and current speed (derived from velocity).
Speed was estimated from the zonal and meridian components
of the absolute geostrophic velocity. Spatial gaps in daily SSH
and speed were filled with their climatological mean value (1993–
2017, following: Bombosch et al., 2014).

Dynamic Models and Spatiotemporally
Sampling of Background Locations
We used Maxent (v3.4.1; Phillips et al., 2017) to model
species dynamic habitat suitability. Sightings (2002–2019)
were spatiotemporally matched with their respective daily
environmental conditions. Maxent requires sufficiently sampled
background information, describing environmental conditions
in the study area (Renner et al., 2015). Hence, a large
sample of background information is needed in a vast and
dynamic study area like the SO, even for conventional static
models (e.g., El-Gabbas et al., 2021a). We thoroughly sampled
background information both in time and space to capture the
spatiotemporal variability of environmental conditions and to
represent a broader range of their combinations. Large temporal
gaps of SIC data exist in 2002, 2011, and 2012 (summarized
in Supplementary Figure 2B). Therefore, we excluded these
years from background sampling to avoid seasonal biases; i.e.,
background information was only sampled from full years 2003
to 2010 and 2013 to 2019.

We evaluated model performance using two independent
cross-validation strategies: spatial-block (five-folds) and temporal
(three-folds) cross-validation (Roberts et al., 2017). This
maintains spatial and temporal independence between training
and testing data, respectively. We used species-specific spatial
blocks presented in El-Gabbas et al. (2021a), while sighting year
was used for temporal segregation (fold1: 2003, 2006, 2009,
2014, and 2017; fold2: 2004, 2007, 2010, 2015, and 2018; fold3:
2005, 2008, 2013, 2016, and 2019). For each species, we sampled
5,000 different background locations per day, 1,000 from each
spatial fold. We believe that the resultant amount of background
information (∼27 million species-specific background data) well-
describes the highly dynamic environment in the SO. We visually
checked the spatial coverage of daily sea ice data and excluded
days with incomplete coverage from background sampling
(Supplementary Figures 2C,D).

Species sightings exhibit spatial sampling bias, particularly in
the Antarctic Peninsula area (Supplementary Figure 1). Spatial
bias can affect model performance and inferences thereof if it
leads to environmental bias (Phillips et al., 2009; El-Gabbas
and Dormann, 2018). We estimated seasonal research efforts in
the SO using research ship-track data gathered from multiple
sources. Driven by the annual cycle of sea ice extent, seasons
were defined as a 3-month interval from January. The number

6https://copernicus.eu/

of quality-controlled ship tracks intersecting with each cell was
used to represent seasonal research efforts (see Supplementary
Appendix 1 for more details). Daily background information was
sampled using the respective seasonal efforts layer as a probability
weight to correct for spatial sampling bias: cells with higher
seasonal research efforts are more likely to be sampled than cells
with less sampling effort. This is similar to how Maxent samples
backgrounds using the “bias grid” option (Elith et al., 2011).

We used two metrics to evaluate model performance: area
under the ROC curve (AUC) and true skill statistics (TSS)
(Supplementary Table 1). For each spatial or temporal testing
fold, testing background data were prepared as 500 randomly
sampled daily locations, only on days with testing presences.
Predicted values at testing presences and background were
pooled together to calculate testing AUC (AUCtest) and TSS.
TSS is a threshold-dependent metric that needs a binary
output (suitable/unsuitable). We used two threshold rules: equal
sensitivity and specificity (TSSEqualSS) or maximizing their sum
(TSSMaxSS) (following: Liu et al., 2013).

Daily mean habitat suitability of spatially and temporally
cross-validated models was independently estimated (2003–
2019), each weighted by their respective AUCtest . As such, for
a particular day, habitat suitability values for a cross-validated
model with a higher AUCtest contribute more to the calculation
of mean habitat suitability. The overall daily habitat suitability
was then calculated as the mean of spatially and temporally
cross-validated models. We created animated videos from daily
predictions to show how species suitability changes with time.
We calculated biweekly and monthly summary maps of the
respective period, irrespective of the year (mean, standard
deviation, and 10 and 90% quantiles) to summarize the year-
round habitat suitability.

Maxent quantifies predictors’ importance based on training
AUC (non-independent data) (Phillips, 2017), which can be
deceptive if training data is highly biased (El-Gabbas et al.,
2021a). Here, we estimated predictors’ importances for each
cross-validated model using AUCtest , estimated using predicted
values at testing presences and 100K randomly sampled (in time
and space) testing backgrounds. Each predictor was randomly
shuffled 150 times, with AUCtest reevaluated using permuted
data. AUCtest declines were summed for each predictor and
normalized to give a percent of predictor importance.

We showed how habitat suitability depends on each predictor
using marginal response curves and response curves of additional
models calibrated using only one predictor in turn. As marginal
response curves can be sensitive to the value at which other
predictors were fixed, we also showed predicted habitat suitability
in the pairwise environmental space of the four most important
predictors (following: El-Gabbas et al., 2021a). In these plots,
predictions were made by allowing all predictors to vary
together. For example, predicted habitat suitability at a certain
combination of SIC and SST represents the mean suitability
at this combination across all observed combinations of other
predictors. We believe this represents a more robust estimate of
species niche preference than marginal response curves.

We further explored potential latitudinal segregation
between species’ suitable habitats, particularly in summer, by
mapping their monthly spatial overlap. For this purpose, we
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convert continuous predicted habitat suitability to binary maps
representing species’ daily suitable/unsuitable habitats. As it
is challenging to choose a biologically meaningful threshold,
particularly in presence-only SDMs (Merow et al., 2013), we
followed a conservative approach while considering possible
uncertainties in predictions from cross-validated models to
avoid the overestimation of suitable habitats. Daily binary maps
were prepared using a model- and species-specific threshold
(TSSMaxSS) (following: Liu et al., 2013). This resulted in eight
daily binary maps (5 and 3 for spatially and temporally cross-
validated models, respectively). Final daily suitable areas were
determined as cells predicted suitable in more than four cross-
validated models. We then summed all daily binary maps to
get the number of days each cell is predicted suitable in the
respective month (2002–2019; for example, see Supplementary
Figure 5A). Finally, we concluded monthly binary maps for each
species, only considering cells predicted suitable in at least 50%
of the days (for example, see Supplementary Figure 5B).

RESULTS

Antarctic Minke Whales
Near-year-round suitable habitats were predicted eastwards of
the Antarctic Peninsula7 to South Georgia and the South
Sandwich Islands and at a small patch in East Antarctica (c.a.
75◦E; Figure 1). From November to May, other suitable habitats
were predicted at areas relatively close to the coast from the
eastern Weddell Sea (30◦W) to the Ross Sea (160◦W; Figure 1).
See Figure 2 for the location of places mentioned in this
paper. Important predictors were SSH (between -1.5 and -1.3
m), SST (<4.5◦C), near the SIE, and SIC (<50%) (Figure 3A
and Supplementary Figures 9–10). AMW habitat was predicted
suitable near the continental shelf break (<100 km) and the
coast (<700 km) and at moderate depths (c.a. 1,000–4,000 m)
(Supplementary Figure 10).

Antarctic Blue Whales
Suitable habitats were predicted from November to April, with
peak suitability between December and February (Figure 4).
Suitable areas were between the tip of the Antarctic Peninsula
and the east of South Georgia and the South Sandwich Islands
and coastal regions from the east of the Weddell Sea eastwards to
the western coast of the Ross Sea. Further, other small patches of
suitable habitats exist in East Antarctica (between the Kerguelen
Plateau and the Kerguelen Islands) and the Bellingshausen and
Amundsen Seas (Figure 4). The area east of the Antarctic
Peninsula is predicted to be suitable year-round, albeit with
relatively lower suitability in winter. Important predictors were
SIC (<50%), SST (< 2◦C, and > 5.5◦C only near the coast or
continental shelf break), 40–250 km from the coast, and < 200 km
from the continental shelf break (Figure 3B and Supplementary
Figures 17–18). High habitat suitability was also predicted at SSH
∼ -1.2 m, low speed (< 0.2 ms−1), close to the SIE (especially on
the open-water side of it), and moderate depths (1,500–4500 m)
(Supplementary Figure 18).

7All directions are given clockwise; i.e., eastwards.

FIGURE 1 | Monthly predicted habitat suitability for the Antarctic minke
whales. Each map represents 90% quantile of daily habitat suitability from
2002 to 2019 in the respective month. Warmer colors represent higher habitat
suitability. Other monthly and biweekly summary maps are shown in
Supplementary Figures 4, 7.

Fin Whales
Highest habitat suitability is predicted from December to the
end of May in the Amundsen Sea; the east of the Bellingshausen
Sea toward South Georgia and the South Sandwich Islands;
near Bouvet Islands; and offshore areas (∼200–300 km from
Antarctica) from the Greenwich Meridian eastwards to the
northwest of the Ross Sea (c.a. 160◦W; Figure 5). From
June to November, small patches of suitable habitats are
predicted in relatively low latitudes. Important predictors are
SST (particularly from -1 to 2.5◦C), distance to the SIE (with
two peaks predominately north of the SIE: up to ∼250 km
and at ∼1,000–1,600 km north of it), distance to continental
shelf break (< ∼450 km), and SSH (-1 to -1.5 m) (Figure 3C
and Supplementary Figures 25–26). Two peaks of habitat
suitability were predicted at shallow depths and ∼4,000 m
(Supplementary Figure 26).

Humpback Whales
High habitat suitability is predicted from December to the end
of April, particularly in the WAP (Figure 6). Other suitable
habitats include near Bouvet Island and coastal area (albeit at c.a.
200 km from the Antarctic coast) from the Greenwich Meridian
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FIGURE 2 | The geographical location of places mentioned in this manuscript. The location of the Polar Front, the southern boundary of the Antarctic Circumpolar
Current (sbACC), and the southern Antarctic Circumpolar Current Front (sACCf) was plotted following Orsi et al. (1995).

eastwards to ∼160◦W. Important predictors are SST (mainly
from -1 to 3◦C, and up to 5◦C only at low SSH or near the
SIE), distance to the SIE (predominately in the open-water side
of it, either close to it or at ∼1,000–1,500 km from it), distance
to continental shelf break (< 450 km), and SSH (< -1.1 m)
(Figure 3D and Supplementary Figures 33–34).

DISCUSSION

Spatiotemporal Habitat Suitability of
Baleen Whales in the Southern Ocean
Antarctic Minke Whales
AMWs are reported to be present year-round in the SO and
have a circumpolar distribution (Risch et al., 2019; Filun et al.,
2020). The AMWs’ year-round presence is mainly supported by
passive acoustic monitoring (PAM) data (Van Opzeeland, 2010;
Dominello and Širović, 2016; Filun et al., 2020; Shabangu et al.,
2020b). However, the majority of recent sightings used here (after
2002) were observed from December to May near the SIE (see

Supplementary Figures 3, 9–10), with very limited occasional
winter sightings (e.g., Van Franeker et al., 2008; Burkhardt,
2009a,b). Nevertheless, relatively older sightings support the
winter presence of AMW in the SO (Taylor, 1957; Erickson, 1984;
Plötz et al., 1991; Aguayo-Lobo, 1994; Ribic et al., 1999; Thiele
and Gill, 1999).

Our models predict nearly year-round habitat suitability for
AMWs along the WAP to South Georgia and the South Sandwich
Islands and in East Antarctica, particularly from October to
June (Figure 1). In this area, the SIE (particularly in summer)
abuts with two ecologically important oceanographic features:
the southern boundary of the Antarctic Circumpolar Current
(sbACC) and the continental shelf break (see Figure 2). Together
with the SIE, both features are important factors affecting
the abundance of top predators (Tynan, 1998; Ribic et al.,
2011), which supports the high ecological importance of this
area (Friedlaender et al., 2021). AMWs feed predominantly on
Antarctic krill (Euphausia superba; hereafter krill) (Beekmans
et al., 2010; Williams et al., 2014), and the continental shelf
break is known for high krill abundance throughout the SO
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FIGURE 3 | (Continued)
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FIGURE 3 | Permutation importance of predictors for the (A) Antarctic minke; (B) Antarctic blue; (C) Fin; (D) Humpback whale models. Permutation importance was
calculated based on the drop in testing AUC after 150 permutations per predictor. Dark and light gray bars represent mean predictor importance for spatially and
temporally cross-validated models, respectively. Red error bars show the standard deviation of the importance of the respective model. Predictors with >10% mean
importance (horizontal dashed line) were considered important predictors and shown in bold names.
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FIGURE 4 | Monthly predicted habitat suitability for the Antarctic blue whales.
Each map represents 90% quantile of daily habitat suitability from 2002 to
2019 in the respective month. Warmer colors represent higher mean habitat
suitability. Other monthly and biweekly summary maps are shown in
Supplementary Figures 12, 15.

(Siegel, 2005; Nicol, 2006; Ainley et al., 2012; Siegel and
Watkins, 2016). Albeit our models did not identify distance to
continental shelf break among the most important predictors,
high habitat suitability was predicted closer to it (Figure 3 and
Supplementary Figure 10), in concordance with results from
previous studies (Ichii, 1990; Beekmans et al., 2010; Santora et al.,
2010; Ainley et al., 2012; Herr et al., 2019; El-Gabbas et al., 2021a).
Upwelling, high primary productivity, and krill peak distribution
are generally found near, and particularly south of, the sbACC
(Tynan, 1998; Nicol et al., 2000; Constable et al., 2003; Atkinson
et al., 2008; Bost et al., 2009), which can explain the AMW
near-year-round predicted habitat suitability at this hotspot area.
Ainley et al. (2012) reported an AMW peak suitability near
the sbACC, while Lee et al. (2017) found a strong association
between satellite-tagged AMWs and the sbACC, with three
tracked animals having remained south of it during the foraging
season. Between December and April, other high suitability areas
form a crest extending from the Weddell Sea (30◦W) eastwards
to the Ross Sea (160◦W) and near the Balleny Islands (Figure 1).
These coastal areas overlap with the location of the continental
shelf break and the SIE during this period. Coastal areas from c.a.

FIGURE 5 | Monthly predicted habitat suitability for the fin whales. Each map
represents 90% quantile of daily habitat suitability from 2002 to 2019 in the
respective month. Warmer colors represent higher mean habitat suitability.
Other monthly and biweekly summary maps are shown in Supplementary
Figures 20, 23.

30 to 170◦E overlap with areas with the frequent AMW sightings
in the Indo-Pacific sector of the SO during independent summer
surveys (Matsuoka and Hakamada, 2020) and with the location
of the sbACC (Figure 2).

Sea ice conditions and the position of the SIE have been
reported as important factors affecting the habitat of AMWs
(Kasamatsu et al., 2000a; Herr et al., 2019). Our models predict
a negative relationship between AMW habitat suitability and
SIC (Supplementary Figure 10), which was similarly reported
by Herr et al. (2019) and El-Gabbas et al. (2021a). In contrast,
Dominello and Širović (2016) and Filun et al. (2020) found a
positive correlation between SIC and AMW acoustic presence
in winter. This positive correlation may be caused by AMWs
calling predominantly in winter, with much less calls during the
foraging season, despite frequent sightings of AMWs during this
period (Van Opzeeland, 2010; Risch et al., 2014; Shabangu et al.,
2020b). A similar seasonal pattern of AMW calls was observed
off Namibia (Thomisch et al., 2019) and Chile (Buchan et al.,
2020), areas free of sea ice year-round, questioning a direct
positive effect of SIC on AMW acoustic presence. Our models
predict high suitability close to the SIE irrespective of SIC and
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FIGURE 6 | Monthly predicted habitat suitability for the humpback whales.
Each map represents 90% quantile of daily habitat suitability from 2002 to
2019 in the respective month. Warmer colors represent higher mean habitat
suitability. Other monthly and biweekly summary maps are shown in
Supplementary Figures 28, 31.

generally low suitability farther away from it, which agrees with
previous studies (Kasamatsu et al., 2000a; Thiele et al., 2000;
Murase et al., 2002; e.g., Beekmans et al., 2010; Scheidat et al.,
2011; Murase et al., 2013; Williams et al., 2014; Herr et al., 2019;
Matsuoka and Hakamada, 2020; El-Gabbas et al., 2021a). High
primary production and krill abundance are known to occur
along and just south of the SIE (Brierley et al., 2002; Murase
et al., 2002), supporting the foraging of many predators, AMWs
in particular (Thiele et al., 2004; Friedlaender et al., 2006; Herr
et al., 2019).

AMWs are well-adapted to exploit pack ice areas (Ainley et al.,
2007; Lee et al., 2017). They were frequently observed within
heavily sea ice-covered areas, associated with pancake and new
ice near the marginal ice zone and use leads for breathing (Ribic
et al., 1999; Ainley et al., 2007, 2012; Bombosch et al., 2014).
Further, AMWs were observed creating holes in newly formed ice
for breathing (Ainley et al., 2007, 2012; Tynan et al., 2009). The
strong preference of AMWs to sea ice habitats can be considered
as protection against predation by killer whales, which occurs
mainly in open waters (Friedlaender et al., 2021). In addition
to the frequent AMW sightings near the SIE, literature reported

AMW sightings in pack ice areas. For example, Naito (1982):
167 km south of the SIE in the Lützow-Holm Bay by the end
of December; Ensor (1989): ∼900 km south of the SIE north of
Prydz Bay in October-November; Thiele and Gill (1999): 180–
350 km south of the SIE in July off Dibble Iceberg Tongue; and
Ribic et al. (1999) who reported that the majority (90%) of AMW
observations occurring in the pack ice area of the southern Scotia
Sea in winter. Available recent sightings (after 2002) show that
only a few AMW observations were made far south of the SIE
(> 400 km), mainly from icebreaker RV Polarstern expeditions
along the Greenwich Meridian and in the center of the Weddell
Sea (Burkhardt, 2009a, 2013a; Williams et al., 2014).

Our models predict high habitat suitabilities at some locations
far south from the SIE from November to February, particularly
in coastal polynyas; e.g., off the Amery and Brunt ice shelves,
and the Balleny Islands and in the Ross and Bellingshausen
Seas (see Supplementary Figure 8 and animated video in El-
Gabbas et al., 2021b). Coastal polynyas are likely hotspots in
the pack ice, as they provide enhanced primary and secondary
production, including krill, and open-water access for birds
and mammals for breathing far within the pack ice (Gill and
Thiele, 1997; Arrigo and Van Dijken, 2003; Van Opzeeland
et al., 2013; Arrigo et al., 2015; Hunt et al., 2016; Labrousse
et al., 2018). The observation of AMWs in polynyas and ice
gaps was reported in other studies (Taylor, 1957; Naito, 1982;
Ainley et al., 2006, 2007; Bester et al., 2017; Konishi et al.,
2020; Shabangu et al., 2020b). The high habitat suitability in
some polynyas and the sightings south of the SIE mentioned
above support that AMWs are not restricted to near SIE but
also exploit polynyas and heavily ice-covered areas within the
pack ice and that the low number of sightings far south
of the SIE or at high SIC values can be an artifact of
sampling constraints.

AMWs are currently classified as “Near Threatened” by the
International Union for Conservation of Nature (IUCN) (Cooke
et al., 2018). Although AMW populations have undergone rapid
increase during the twentieth-century (Tulloch et al., 2019),
their strong dependence on sea ice as habitat and krill for
food suggests that AMWs are further at high risk of climate
change (Thiele et al., 2004; Lee et al., 2017; Herr et al., 2019;
Risch et al., 2019; Konishi et al., 2020). AMW habitats are
expected to narrow considerably during the upcoming decades
(Ainley et al., 2012), with a predicted slow population growth
rate over the next 100 years (Tulloch et al., 2019). Climate
change is expected to affect the amount, quality, and interannual
variability of sea ice, the location and length of the SIE, the
abundance and distribution of krill, the prevalence of coastal
polynyas, and shifting sbACC southwards (Ainley et al., 2007,
2012; Nicol et al., 2008; Beekmans et al., 2010; Friedlaender
et al., 2011; Gutt et al., 2015; Atkinson et al., 2019). Therefore,
understanding the niche preferences of the AMWs in the SO
and its relationship to sea ice is essential for AMWs conservation
under climate change.

Antarctic Blue Whales
Currently, ABWs are rarely sighted in the SO after being
harvested to near extinction during commercial whaling,
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resulting in the extermination of 99% of the estimated pre-
whaling population (Branch et al., 2007). ABW estimated
abundance has depleted from 239,000 during pre-whaling
to as few as 360 in 1973 (Branch et al., 2004), with the
most recent circumpolar abundance estimate of c.a. 3,000
individuals (Branch, 2007; Cooke, 2018a). ABWs are the least
observed species in our study, sparsely distributed in space, with
most sightings observed in January/February (Supplementary
Figure 11). They are currently classified as ‘Critically Endangered’
by IUCN (Cooke, 2018a), and their distribution is poorly
understood at large spatial and temporal scales (Branch et al.,
2007; Thomisch et al., 2016).

ABW suitable habitats are predicted mainly from November
to April, peaking between December and February (Figure 4),
overlapping in time with the majority of SO’s historical catch
data (Risting, 1928; Horwood, 1986). Our models show a
latitudinal shift in daily habitat suitability from (the low-to-
moderately suitable) mid-latitudes in mid-October poleward to
the most southern suitable areas near the Antarctic coast in mid-
February, followed by a northward shift until low circumpolar
suitability is predicted generally from late May to October
(see El-Gabbas et al., 2021b for animated videos). Distance to
coast was one of the important predictors, with high habitat
suitability relatively close (40–250 km) to the coast (Figure 3B
and Supplementary Figures 17–18). Shabangu et al. (2017)
reported similar results using PAM data and highlighted that
ABWs prefer highly productive areas closer to the Antarctic coast.
Our models predicted high habitat suitability in coastal areas
from the eastern margins of the Weddell Sea eastwards to the
western coast of the Ross Sea (Figure 4). These areas overlap with
historical catch data (Kellogg, 1929; Horwood, 1986; Branch et al.,
2007), old sightings (before 2002) excluded from our analyses
(Supplementary Figure 11E), and other recent independent
visual and PAM data (Nishiwaki et al., 1997; Rankin et al.,
2005; Gedamke and Robinson, 2010; Matsuoka and Hakamada,
2014; Miller et al., 2015; Mogoe et al., 2016, 2017, 2019; Isoda
et al., 2017, 2020). In this area, the continental shelf break,
summer SIE, and the sbACC (only from ∼ 45◦E to 170◦W)
overlap, which can explain the high krill abundance (Tynan,
1998; Atkinson et al., 2017) and predicted habitat suitability
(Cuzin-Roudy et al., 2014) in this area. The distance to the
sbACC is an important predictor for ABW call presence in the
SO (Shabangu et al., 2017). Our models identified distance to
continental shelf break among the most important predictors,
with predicted habitat suitability being the higher the closer to it
(Figure 3B and Supplementary Figures 17, 18). In concordance,
Miller B. S. et al. (2019) showed a high occurrence of ABW
calls along the continental shelf break off East Antarctica (138◦–
152◦E), while coastal area off Queen Maud Land was recently
suggested as an ABW hotspot area, supported by visual sightings
(Paarman et al., 2021) and PAM data (Shabangu et al., 2020a) as
well as predictions from our models.

The migratory pattern of ABWs is complex and non-
obligatory (Leroy et al., 2016; Thomisch et al., 2016; Torterotot
et al., 2020). PAM data show evidence that at least some animals
overwinter at high latitudes (Širović et al., 2009); e.g., off the
Antarctic Peninsula (Širović et al., 2004, 2009; Dziak et al., 2015),

East Antarctica (Širović et al., 2009; Gedamke and Robinson,
2010), the Weddell Sea (Thomisch et al., 2016), and off Maud
Rise (Shabangu et al., 2020a). ABW calls in the SO show a
seasonal pattern, with low acoustic detections in winter (Širović
et al., 2004, 2009; Branch et al., 2007; Thomisch et al., 2016)
and a more evident year-round presence at PAM stations at
lower rather than higher latitudes (Širović et al., 2009). The
ABW year-round presence at the SO’s high latitudes is not an
exception: ABWs are acoustically detected year-round at mid-
latitude locations in the sub-Antarctic and subtropical sections of
the Indian Ocean (Samaran et al., 2010, 2013; Leroy et al., 2016,
2018; Torterotot et al., 2020) and off Namibia (Thomisch et al.,
2019). The definite nature of ABWs migration (and probably
other baleen whale species) is not yet clear and can include
either partial or differential migration or a mixture of both
(Thomisch, 2017). Our models identify near-year-round high
habitat suitability in the east of the Antarctic Peninsula. While
most historical catches were harvested between October and May
(Risting, 1928; Harmer, 1931; Kemp and Bennett, 1932; Branch
et al., 2007), year-round ABW catches were reported off South
Georgia and South Shetland Islands (Hinton, 1915; Risting, 1928;
Kellogg, 1929; Harmer, 1931; Hjort et al., 1932). Although this
area was a main ABW commercial whaling site, the extensive
exploitation caused ABWs to be currently rare there (Moore
et al., 1999; Clapham et al., 2008; Leaper and Miller, 2011).
Nevertheless, recent work suggests the start of ABW recovery
from this area (Calderan et al., 2020), and our models further
support the importance of this area as near-year-round habitat for
ABWs. Other predicted near-year-round suitable habitats include
the east of Bouvet Island and off the Kerguelen Plateau, although
with generally low suitability in winter. PAM data from the
Southern Indian Ocean (e.g., Leroy et al., 2016) further support
the importance of the area north of the Kerguelen Plateau as
year-round suitable habitat for ABWs.

Our models predict high habitat suitability at low SIC values
and close to the SIE (Supplementary Figures 17, 18). Daily
habitat suitability maps show that ABW suitable habitats are
generally limited to the vicinity of the SIE and rarely south of
it (see El-Gabbas et al., 2021b for animated videos). Information
derived from PAM (Shabangu et al., 2017) and visual sightings
(Kasamatsu et al., 1988, 2000b; Širović et al., 2009) suggests
that following the twentieth-century heavy exploitation, the
distribution of ABWs is currently confined to along the SIE in
summer where krill is more abundant, whereas historical catches
extended farther north of the pack ice (Branch et al., 2007; Leaper
and Miller, 2011). Acoustic data support the general avoidance
of ABWs of heavily sea ice-covered areas (Širović et al., 2004),
with an estimated negative correlation between SIC and ABW
calls (Širović et al., 2004; Thomisch et al., 2016). Thomisch et al.
(2016) found that the majority of calls were detected during
low or moderate sea ice conditions, although some calls were
also detected at high SIC (>90%) in winter, suggesting that
ABWs show some tolerance to high sea ice conditions (i.e., is
not restricted to ice-free areas) (Double et al., 2015; Thomisch
et al., 2016). This is supported by some historical ABW catches
in drifting ice in the pack ice area (Slijper, 1962; Horwood,
1986). South of the SIE, our models predicted high suitability in
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coastal polynyas near the Amery and Brunt ice shelves and in the
Ross Sea in December and January (Supplementary Figure 16).
This supports the critical role of coastal (particularly recurrent)
polynyas as habitat, particularly during austral summer, for many
baleen whale species, including ABWs, providing animals with
food and access to open water for breathing (Tynan et al.,
2009; Thomisch et al., 2016). Nevertheless, there is no visual
evidence available to us for the actual occupation of polynyas
by the large ABWs.

ABWs are predicted to undergo further substantial abundance
reduction by the end of the twenty-first century (Tulloch
et al., 2019) due to, e.g., krill biomass reduction resulting from
overfishing and potential loss of sea ice in response to climate
change (Wiedenmann et al., 2011). ABW habitats are highly
vulnerable to future climate change (Shabangu et al., 2017), which
could impede the recovery of ABWs and a higher conservation
risk. This urges the need for dedicated surveys and tagging
studies to monitor the ABW population (Tulloch et al., 2019),
which can be used in combination with year-round PAM data
to improve our understanding of ABW ecology and assess
population trends and their future threats (Thomisch et al., 2016;
Calderan et al., 2020).

Fin Whales
FWs were the most frequently caught whale species in the
SO during the commercial whaling era (Clapham and Baker,
2002; Leaper and Miller, 2011; Santora et al., 2014). Globally,
FWs are currently classified as “Vulnerable” by IUCN Red List
(Cooke, 2018b). However, little information is known about their
abundance and distribution in the SO (Branch and Butterworth,
2001; Herr et al., 2016). Recent years show signs of slow
population recovery, particularly in the WAP area (Joiris and
Dochy, 2013; Santora et al., 2014; Reyes Reyes et al., 2015;
Burkhardt et al., 2021). Nevertheless, FWs are projected to
undergo further population decline by 2100 due to climate
change (Tulloch et al., 2019), which urges the need for identifying
and protecting their key habitats and better management of
anthropogenic activities in the SO to ensure FWs’ unhindered
recovery (Santora et al., 2014; Burkhardt et al., 2021).

Our models predict high habitat suitability mainly from
December to May (peaking in February), with low-to-moderate
suitability during autumn and winter only at lower latitudes
(Figure 5). This largely agrees with the known information on
FW temporal distribution in the SO, as derived from visual
sightings (Kasamatsu et al., 1996) and historical catches (Hjort
et al., 1932; Kemp and Bennett, 1932; Ohno and Fujino, 1950).
However, recent PAM data shows that FW acoustic presence (as
represented by 20-Hz pulses) starts and ceases significantly later
than their reported visual presence near the Elephant Island area
(Burkhardt et al., 2021). FW 20-Hz pulses show a strong seasonal
pattern, occurring mainly between mid-February and July, with
a peak detection in May, and only occasional pulses in the
remainder of the year (Širović et al., 2004, 2007, 2009; Baumann-
Pickering et al., 2015; Shabangu et al., 2020a; Burkhardt et al.,
2021; Miller B. S. et al., 2021). Combined information derived
from our models and PAM data suggests FW presence in the SO
from at least from December to August (Burkhardt et al., 2021).

High suitability areas (Figure 5) coincide with independent
datasets and known FW hotspot areas; e.g., the Antarctic
Peninsula area (Santora et al., 2014; Herr et al., 2016); near
Elephant Island (Thiele et al., 2004; Burkhardt and Lanfredi,
2012; Joiris and Dochy, 2013; Viquerat and Herr, 2017; Bassoi
et al., 2020; Burkhardt et al., 2021); around South Orkneys
(Viquerat and Herr, 2017); the Scotia Sea (Orgeira et al.,
2017); the Maud Rise (Shabangu et al., 2020a); East Antarctica
(Nishiwaki et al., 1997; Matsuoka and Hakamada, 2014; Isoda
et al., 2017; Mogoe et al., 2017, 2019); and near Bouvet Island
(Ensor et al., 2007). Suitable habitats were predicted between
the Southern Antarctic Circumpolar Current Front (sACCf)
and south of the sbACC (Figure 2), particularly along the
WAP eastwards; near Bouvet Island; north of the Balleny
Islands; and in East Antarctica. Both oceanographic features
are important productivity areas which support high prey
availability. Therefore, not surprisingly several studies suggested
an association between FW concentrations along and just south
of the sbACC (Tynan, 1998; Santora and Veit, 2013; Viquerat and
Herr, 2017; Matsuoka and Hakamada, 2020); while Širović et al.
(2006) and Bassoi et al. (2020) reported a higher concentration
of FWs near the sACCf. Further, Širović et al. (2009) and Santora
et al. (2014) found high FW call detections and visual sightings,
respectively, between the sbACC and the sACCf.

The relationship between sea ice conditions and FW habitat
and behavior in the SO may have not been fully understood
yet. Our models show a negative relationship between sea ice
and FW habitat suitability: high suitability at low SIC and>100–
200 km north of the SIE. In contrast to other study species,
only moderate suitability is predicted near the SIE, with very low
values south of it. This conforms with the current knowledge
that FWs are pelagic species, negatively correlated with SIC,
and absent from heavily sea ice-covered areas (Kasamatsu et al.,
1996, 2000b; Širović et al., 2004, 2006; Cooke, 2018b; El-Gabbas
et al., 2021a). In the available dataset, the only FW sightings
south of the SIE occurred SSW of Elephant Island (April 2012):
35 km south of the SIE at high SIC values (81–93%) (Burkhardt,
2013b). In a recent study, Burkhardt et al. (2021) showed
that FW acoustic occurrence off Elephant Island diminishes
clearly before the start of sea ice formation (also shown in
Širović et al., 2004), which suggests that FW acoustic presence
is not directly related to the growth of sea ice (i.e., sea ice
formation does not lead to animals moving northwards toward
the north of the SIE), but other factors such as depletion of prey
abundance (Burkhardt et al., 2021). Furthermore, our models
also predict moderate habitat suitability in small coastal polynyas
in the Ross Sea, near the Amery ice shelf, and at small coastal
areas in the Weddell and the Bellingshausen Seas in January
(Supplementary Figure 24). However, it is unclear if these coastal
polynyas represent habitats that FWs actually occupy as these
areas are bordered by heavily ice-covered waters (effectively
inaccessible FW) and are further south than FWs to date are
known to migrate.

Humpback Whales
Our models predict high HW habitat suitability in the WAP
area from mid-October to May, and to a lesser extent, in June
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(Figure 6). The WAP is a well-known HW hotspot area in
summer and autumn (Stone and Hamner, 1988; Thiele et al.,
2004; Nowacek et al., 2011; Johnston et al., 2012; Friedlaender
et al., 2013; Bester et al., 2017; Reisinger et al., 2021). Krill
is the primary food source of HWs, and the distribution and
movement of HWs are highly associated with the distribution
and abundance of krill (Murase et al., 2002; Nowacek et al., 2011;
Curtice et al., 2015; Weinstein et al., 2017; Friedlaender et al.,
2021). The WAP area is known to support large populations of
krill and their predators (Friedlaender et al., 2006, 2013, 2021;
Nowacek et al., 2011; Atkinson et al., 2017) because of the
nutrient-rich and phytoplankton-laden water near the surface
advected along the WAP by the Antarctic Circumpolar Current
and nutrient-rich Circumpolar Deep Water being upwelled in the
cross-shelf deep water canyons (Curtice et al., 2015) along the
WAP’s northern shelf break.

Further moderate-to-high suitable habitats are predicted from
December to mid-March near Bouvet Island and a band c.a.
200 km from the Antarctic coast from the Greenwich Meridian
eastwards to the Balleny Islands (Figure 6). These areas of high
habitat suitability overlap well with locations of independent
data; including historical catch data (Omura, 1973; Matsuoka
et al., 2006a), PAM data (150–180◦E, Miller et al., 2017),
and visual sightings (Matsuoka et al., 2006a,b; Hakamada and
Matsuoka, 2013). These coastal areas (particularly 50–170◦E)
concur with the sbACC (including the area just south of it), an
important oceanographic feature for HW distribution (Tynan,
1998; Matsuoka et al., 2003, 2006a). Furthermore, this area
is located near the SIE in summer, which is characterized by
high productivity and krill abundance (Nicol, 2006). The high
HW suitability off Bouvet Island concurs with summer PAM
data (Miller et al., 2017) and the frequent detections from this
area using visual and telemetry data (Engel and Martin, 2009;
Rosenbaum et al., 2014). This area shows large aggregations of
krill (Siegel, 2012; Siegel and Watkins, 2016) and represents an
important feeding ground for the West African HWs (breeding
stocks B) (Rosenbaum et al., 2014; Seakamela et al., 2015).
This high productivity area (Perissinotto et al., 1992) overlaps
with the location of the sbACC and the sACCf (Figure 2). By
contrast, low habitat suitability was generally predicted from
May to November.

Our models predict low habitat suitability in the Weddell and
Ross Seas. The HW absence from the Ross Sea, particularly south
of 72.5◦S, is well recognized although the extensive sampling
from this area (Matsuoka et al., 2006b; Ainley, 2009; Branch,
2011; Hakamada and Matsuoka, 2013). HW observations from
the Ross Sea area are confined to the north of the entrance of the
Ross Sea; e.g., along the shelf break off Adélie Land coast (Ainley,
2009; Branch, 2011). The absence of HWs from the southern parts
of the Ross Sea may be due to their high exploitations during the
commercial whaling era or that the area has never been inhabited
by HWs (Branch, 2011). This can be due to 1) HWs’ preference to
avoid areas with high sea ice concentrations unsuitable with their
body shape and long pectoral fins; or 2) HW’s possible aversion to
ice krill (Euphausia crystallorophias), dominating the area south
of 73◦S in the Ross Sea (Sala et al., 2002; Branch, 2011). Dalla
Rosa et al. (2008) reported a low HW density in the Weddell

Sea. No sightings were available from the Weddell Sea, except
along the Greenwich Meridian and northwest of the Weddell
Sea near the Antarctic Peninsula (but see information from PAM
data below). According to historical catch and recent visual and
satellite-tracking information, the Kerguelen Plateau area is an
important feeding area for the Australian HW population in
summer due to its high productivity (Mackintosh, 1942; Omura,
1973; Tynan, 1997; Matsuoka et al., 2006b; Bestley et al., 2019).
Nevertheless, our models predict low habitat suitability near the
Kerguelen Plateau northwards, with suitable habitat only at the
south of it close to the location of the sbACC and the SIE, in
concordance with Tynan (1997).

The temporal distribution of suitable habitats (Figure 6)
agrees, all in all, with the current state of knowledge by
means of visual observations (Kasamatsu et al., 1996) and catch
data (Matthews, 1937; Mackintosh, 1942). Historical catch data
off South Georgia and the South Shetland Islands peaked in
January, with another smaller peak in May (Matthews, 1937).
Matthews (1937) related these two peaks to the arrival and
departure of HWs from the SO. Nevertheless, historical catch
data also provided evidence that not all HWs leave the SO
in winter: many HWs were caught in the 1910s off South
Georgia in May-June (Risting, 1928; Matthews, 1937). Since
the cessation of commercial whaling, very limited HW winter
sightings were reported from the SO: e.g., two individuals were
observed in coastal fjords in the WAP in early August 2002
(Thiele et al., 2004).

Recent PAM data showed a nearly year-round HW acoustic
presence in the Weddell Sea and the WAP (Mckay et al., 2004;
Van Opzeeland et al., 2013; Schall et al., 2020). Interestingly,
low (January-February) or no (December) HW acoustic presence
was detected off Elephant Island during summer (Schall et al.,
2020), despite the visual observation and high habitat suitability
predicted during the same period. HW’s near-year-round
acoustic presence and incidental winter sightings support that
part of the HW population remains at high latitudes during
winter (Thiele et al., 2004; Van Opzeeland et al., 2013; Schall
et al., 2020). Brown et al. (1995) showed evidence that some
HW females overwinter in the SO feeding grounds. This is
probably an advantage for some adult females to avoid the high
energetic cost of migration and reproduction in some years
(Brown et al., 1995; Van Opzeeland et al., 2013; Druskat et al.,
2019; Schall et al., 2020).

Our models show that suitable habitats for HWs are located
along and north of the SIE, following its retreat during austral
spring/summer (see El-Gabbas et al., 2021b for animated
videos). Likewise, previous studies indicate that HWs prefer
ice-free areas (Dalla Rosa et al., 2008; Bombosch et al., 2014;
Schall et al., 2020; El-Gabbas et al., 2021a) and are highly
concentrated near the SIE and following it as it retreats (Thiele
et al., 2004; Friedlaender et al., 2011; Bombosch et al., 2014;
Riekkola et al., 2019; El-Gabbas et al., 2021a; Reisinger et al.,
2021). The abundance of krill is highly related to the near
or just south of the SIE (Daly and Macaulay, 1988; Brierley
et al., 2002), which might be an explanation why HWs were
often seen close to it. Our models predict a negative (albeit
weak) relationship between HW habitat suitability and SIC
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(Supplementary Figure 34; see also El-Gabbas et al., 2021a).
This agrees with the results of Schall et al. (2020, 2021),
who found a weak correlation between SIC and HW acoustic
presence in the Weddell Sea. Nevertheless, acoustic findings
contradict the commonly recognized notion of HWs avoiding
ice-covered areas: HWs were acoustically present nearly year-
round, including high SIC values (> 90%) in winter, at the
PALAOA station (on the Ekström Ice Shelf) (Van Opzeeland
et al., 2013) and other PAM stations from the Weddell
Sea (Schall et al., 2020). However, daily predictions from
our models showed low predicted habitat suitability near the
PALAOA station on days with HW acoustic presence from
February to April. Although daily prediction maps show that
HWs follow the SIE retreat, high habitat suitability is also
predicted in small coastal polynyas in January and February
(Supplementary Figure 32). Polynyas may provide HWs with
access to open areas for breathing and enhanced productivity
in winter (Van Opzeeland et al., 2013; Saenz et al., 2020; Schall
et al., 2020). Nevertheless, and in contrast to AMWs, we are
unaware of reported HW visual observations from SO polynyas,
and the presence of HWs in coastal polynyas may require
further investigations.

HWs are globally classified by the IUCN as “Least Concern”
(Cooke, 2018c). However, HWs are predicted to be heavily
impacted by future climate change (Meynecke et al., 2020):
reaching full population recovery by 2050 then being reduced
to half of their population by 2100 (Tulloch et al., 2019).
In a recent study, Schall et al. (2021) showed a persistent
HW acoustic presence in the Weddell Sea from 2011 to 2018,
except during El Niño years 2015 and 2016, during which
HWs were acoustically almost absent. Future climate change
is predicted to increase the frequency of El Niño events (Cai
et al., 2014), which might affect the spatiotemporal distribution
and recovery of HWs in the SO (Schall et al., 2021). We
compared HW biweekly and monthly habitat suitability from
2011 to 2018 and did not find a notable difference during the
El Niño years. Furthermore, available sightings show consistent
HW presence in the WAP during the summer from 2014
to 2016, indicating HW’s physical presence in the area also
during El Niño years. The impact of El Niño on the SO’s
ecosystem seems to be complex and mediated through reduced
productivity and changes in sea-ice dynamics and krill abundance
and recruitment (Quetin and Ross, 2003; Murphy et al., 2007;
Loeb and Santora, 2015; Meynecke and Meager, 2016; Schall
et al., 2021). This suggests that El Niño events can affect HW’s
acoustic behavior and individual fitness, but not necessarily
its physical presence or habitat suitability in the SO. The
unnoticeable change in habitat suitability during El Niño years
can be due to factors or processes not pronounced in the
environmental data used in our model, e.g., changes in krill
abundance. The effect of El Niño events on the SO’s ecosystem
and particularly HW populations at high latitudes require
further investigation.

Latitudinal Segregation in Species’ Suitable Habitats
From December to April, models predict overlap between
suitable habitats of the four baleen whale species beyond c.a.

100–200 km from the Antarctic coast between 10◦W eastwards
to Scott Island (170◦E) and at sparse locations from the WAP
eastwards to South Georgia and the South Sandwich Islands, with
more evident overlap from January to March (see Figure 7 and
Supplementary Figure 36). The areas between 50◦E and 170◦E
and at the WAP eastwards intersect with the area between the
sbACC and the sACCf (Figure 2) and intersects with the location
of the SIE during this period, which might explain the importance
of these high productivity areas as key summer habitats for baleen
whales. The area from the WAP toward South Georgia and the
South Sandwich Islands is a well-recognized feeding habitat for
the four species, supported by historical catch data and recent
surveys (Kemp and Bennett, 1932; Richardson et al., 2012; Herr
et al., 2016; Kennedy et al., 2020; Friedlaender et al., 2021).

To avoid competition between sympatric whale species
over limited resources, species may use different ecological
niches (e.g., feeding on different prey species) or partition the
available resources (Friedlaender et al., 2009; Herr et al., 2016).
Intraspecific morphological differences (e.g., the size and shape
of the animal body and baleen plates) help baleen whales differ
in their feeding behavior and the selection of prey type and
size (Laws, 1977a). The study species show (not entirely) size-
dependency predation of krill: HWs aggregate over small juvenile
krill, AMWs over krill of intermediate size, ABWs over first-year
krill, and FWs over large mature krill (Laws, 1977b; Santora et al.,
2010; Miller E. J. et al., 2019), probably in relation to differences in
their filter-feeding apparatus (Bassoi et al., 2020). Further, species
show vertical resource partitioning, feeding separately on krill at
different depths irrespective of the krill patch density: e.g., HWs
in the top portion of the water column and AMWs at greater
depths (Friedlaender et al., 2009).

To the north and south of these core areas that are predicted
suitable for the four species together, models show latitudinal
segregation in suitable habitats (Figure 7 and Supplementary
Figure 36). Between December and May, areas closer to the
Antarctic coast are primarily predicted suitable for AMWs but
also overlapping sporadically with ABWs and HWs. AMWs are
predicted to not overlap with other species in the southern Ross
Sea, between Balleny and Scott Islands, and at sparse locations
in the southern Amundsen and Bellingshausen Seas and in the
east and center of the Weddell Sea. This strongly agrees with the
pagophilic nature of AMWs, occupying pack ice areas (Ainley
et al., 2012) for their high krill abundance, reducing competition
with other mesopredators, and avoiding predation by killer
whales in open waters (Laws, 1977a; Friedlaender et al., 2021).

FW and HW suitable habitats overlap at a small strip just
north of the core area of the four species. At moderate-to-low
latitudes, FWs are generally suitable in areas unsuitable for other
study species. This is except for the area off Bouvet Island, which
is predicted to be also suitable for HWs and sporadically for
ABWs. FWs prefer open water areas and is rarely seen in the
pack ice (Harmer, 1931; Hjort et al., 1932; Cooke, 2018b), with
the majority of the population thought to occur north of 60◦S
(Laws, 1977b; Kasamatsu et al., 1996; Matsuoka and Hakamada,
2020). ABWs are predicted to not overlap with other species at an
area between the north of the Kerguelen Islands to the south of
Kerguelen Plateau (c.a. 70◦E) and two small patches at moderate
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FIGURE 7 | Overlap of predicted suitable habitats of baleen whales in the SO. The map to the left shows the overlap between smoothed suitable habitats in January.
Colors represent possible combinations (AMW, Antarctic minke whales; ABW, Antarctic blue whales; FW, Fin whales; HW, Humpback whales). The map to the right
shows the number of overlapping species (without smoothing) in January. Maps for monthly overlap are shown in Supplementary Figures 36, 37. Species-specific
monthly suitable habitats are shown in Supplementary Figures 5, 13, 21, and 29, while the pairwise overlap between species’ suitable habitats is shown in
Supplementary Figure 38.

latitudes c.a. 62◦S 150◦W and in the Bellingshausen Sea (c.a.
68◦S 100◦W). This may indicate local spatial differences in prey
composition, but we do not have sufficient data to examine this.

Dynamic Species Distribution Models in
the Southern Ocean
Sighting Data Paucity and Spatiotemporal Biases
Using visual sightings, this study employed dynamic SDMs
to predict the daily habitat suitability of four baleen whale
species in the SO. Although these daily prediction maps have
promising importance in conservation applications, the paucity
and characteristics of available data might have affected the
robustness of the model results. Recent baleen whale sightings
from the SO are limited in space and time (Supplementary
Figure 1; El-Gabbas et al., 2021a). Regular shipboard surveys
are hindered by the SO’s remoteness and seasonal ice cover,
implicating high costs and logistic efforts (Scheidat et al.,
2011). In this study, we excluded sightings before June 2002
to maintain spatiotemporal matching between sightings and
daily environmental predictors. Similarly, although historical
catch data represents valuable information on the pre-whaling
spatiotemporal distribution of the species, we cannot use these
data in dynamic models. The species-environment relationship
may have changed after the species’ extensive extirpation and
changes in the physical environment during the last century,
although evidence for this is yet unclear. Discarding older
sightings resulted in a smaller sample size (see Supplementary
Figures 3A,E, for example). The effect of discarding these
data on the reliability of our model outputs depends on the
amount of unique environmental combinations in these data
not represented in recent sightings. Further, some important

predictors were either incomplete at a large spatial scale,
e.g. chlorophyll-a data from the SO is highly patchy outside
of summer months, or not available at the appropriate
spatiotemporal resolution, e.g., primary productivity and krill
abundance (Herr et al., 2016; El-Gabbas et al., 2021a), disallowing
using them in the current models.

Sighting data from the SO shows inevitable spatiotemporal
biases (Supplementary Figure 1), which are expected further to
lead to environmental bias. These biases need to be accounted for
carefully during model calibration (Phillips et al., 2009; Merow
et al., 2013; El-Gabbas and Dormann, 2018). We considered
spatial sampling bias correction by using the estimated seasonal
research effort to sample similarly biased daily background
information (Supplementary Appendix 1 in the Supporting
Information), a method commonly implemented to correct
for spatial sampling bias (Phillips and Dudík, 2008; Merow
et al., 2013). This assumes that the estimated research efforts
correctly reflect the (typically unknown) spatial bias pattern
in baleen whales sampling (Merow et al., 2013). However,
this may not be a valid assumption; for example, if the used
ship tracks dataset underrepresents the actual pattern of baleen
whales’ research efforts or if it reflects unrelated activities (e.g.,
physical oceanography and geological studies). It is challenging
to effectively correct for spatial sampling bias in dynamic SDMs
in the SO, as the pattern of spatial sampling bias varies through
time due to the waxing and waning of sea ice. Some sampling bias
correction methods may not be applicable in dynamic models;
for example, spatial filtering (rarefaction) (Aiello-Lammens
et al., 2015) is commonly used in static SDMs to reduce the
clumpiness of the data (e.g., El-Gabbas et al., 2021a). However,
in dynamic SDMs, the frequent baleen whale sampling in easily
accessed sites, e.g., the WAP, does not necessarily represent
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identical environmental combinations as the sampling at these
sites was performed across many years. Therefore, discarding
spatially clumped observations can result in excluding important
environmental combinations.

Another related issue is that sightings show clear temporal
bias toward the less harsh environmental conditions in austral
summer months, particularly from mid-December to the end of
February (Supplementary Figure 1). Seasonal sea ice prohibits
efficient sampling from the south of the SIE and during the
autumn/winter months (Bombosch et al., 2014; El-Gabbas et al.,
2021a), restricting sampling efforts in the pack ice area to very
few icebreaker-born surveys (e.g., Scheidat et al., 2011; Herr et al.,
2019). Relatively recent winter sightings (after 2002) are very
limited, with many of the older sightings observed in winter or
south of the SIE being excluded from current models due to the
lack of concurrent environmental data. Although the recognition
that temporal sampling bias can result in environmental bias that
may affect the model reliability, limited studies have investigated
methods for correcting for the effect of temporal sampling
bias (Ingenloff et al., 2020). It is challenging to correct for
temporal sampling bias in the current data, as the problem is
not the imbalanced sightings across time (e.g., higher sampling in
summer than in winter), but the almost lack of sampling efforts
from mid-March to mid-December (Supplementary Figure 1),
particularly from high latitudes.

In the current models, we did not incorporate explicit
information on the date or season of observation; i.e., the ability
of the models to predict at a given combination of date and
location is only ruled by the (n-dimensional) environmental
similarity at this combination and environmental conditions
at sightings. Therefore, data paucity and environmental biases
in recent sightings might have affected the models’ ability to
predict during autumn/winter months or south of the SIE.
Nevertheless, our models were able to predict near-year-round
habitat suitability at some locations and coastal polynyas south
of the SIE, particularly in summer. It is important, however,
to note that information on the location of daily polynyas was
not explicitly incorporated into the models: as polynyas were
assigned a positive distance to the SIE, the models do not
differentiate between positive values at polynyas and positive
values at cells just outside of the SIE. In future models, daily
polynyas can be explicitly included in the model as a binary
predictor (i.e., polynya/not-polynya). In order to be able to
predict the winter distribution of baleen whales in the SO with
high accuracy, obtaining more data beyond the summer months
and from the south of the SIE is necessary. In such a case,
the spatiotemporal (∼ environmental) bias can be considered
in future models by environmentally filtering species data,
discarding redundant information with similar environmental
conditions (Varela et al., 2014).

Integrating Visual Sightings and Passive Acoustic
Monitoring Data in Dynamic Species Distribution
Models
As we emphasized above, gaps and spatiotemporal biases in
sighting data highlight the need for more data, covering
environmental combinations not presented in currently available

data, particularly in austral winter and south of the SIE (El-
Gabbas et al., 2021a). However, obtaining sufficient sightings
across the vast SO at a large spatial scale and fine temporal
resolution is hard, if possible. PAM data is very promising
to complement our limited knowledge on the year-round
spatiotemporal distribution of baleen whales derived from
sighting data (Van Opzeeland et al., 2013) as PAM is unaffected
by poor weather conditions, operates both day and night
autonomously and omnidirectionally over extended periods.
Additionally, it is capable of detecting species below the water
surface, while not requiring the presence of researchers in the
study area (Mellinger et al., 2007; Leroy et al., 2016; Frasier
et al., 2021). PAM is particularly useful in the SO for detecting
rarely visually sighted species like ABWs, which are regularly
detected in acoustic recordings (Gedamke and Robinson, 2010).
Further, PAM can detect species presence in areas that are difficult
to access, e.g., when they are permanently or seasonally ice-
covered and typically do not exhibit temporal biases compared
to sightings data.

However, PAM data requires careful pre-processing before
being used in SDMs. One difficulty in using acoustic data for
dynamic SDMs is the potential spatial mismatch between the
acoustic recorder location and the actual calling position of the
animals, which results from the fact that marine mammal sounds,
especially low-frequency baleen whale vocalizations (e.g., ABWs),
can propagate over long distances (Širović et al., 2007; Širović
and Hildebrand, 2011). Also, PAM data is frequently collected
over extended periods from fixed sensors at a few locations,
which may not well represent environmental conditions in the
entire area of interest. The degree to which environmental
conditions (and their combinations) at a few fixed locations
(e.g., Van Opzeeland et al., 2014) representing the environmental
conditions at the vast SO needs to be assessed before using
these data to predict the circumantarctic habitat suitability of
the species to avoid environmental extrapolation. Further, the
less understood behavioral context of sound production for
some baleen whale species represents a hurdle of the efficient
use of PAM data (Mellinger et al., 2007). PAM occurrence
only represents vociferous animals: animals can be physically
present near the detector but not-calling because of behavioral
reasons (Verfuss et al., 2018). Therefore, SDM outputs using PAM
data can be sensitive to the acoustic behavior of the vocalizing
animals. In conditions at which species’ acoustic behavior covary
with values of an important environmental predictor, it can be
challenging to correctly estimate the relationship between the
species habitat suitability and this predictor. For example, the
more frequent AMW calls at high latitudes during austral winter
than in summer may suggest a positive correlation between SIC
and AMW acoustic presences (Filun et al., 2020). However, this
correlation needs to be explained carefully: this may indicate a
positive correlation with AMW vocalizations, but not necessarily
with AMW habitat suitability. Similar AMW call seasonality was
shown at low latitudes completely free of sea ice (Thomisch et al.,
2019; Buchan et al., 2020), suggesting that the more often calls in
winter is due to other factors not directly related to sea ice.

PAM and visual sightings data do not necessarily mirror the
same information. The temporal mismatch between both data
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FIGURE 8 | Combinations of environmental conditions in the Southern Ocean (SO) for daily distance to sea ice edge (SIE; x-axis) and daily sea ice concentration
(SIC; y-axis). The left panel shows combinations at daily sampled 5,000 cells (2003–2010 and 2013–2019), while the right panel shows combinations on RV
Polarstern expedition tracks (2005–2018). The grid color indicates the number of cells (log scale) at each combination, representing the relative intensity of
environmental conditions in both datasets (white areas are for non-existing combinations). Black points represent environmental conditions at sightings of the four
study species: all data used in this study in the left panel (including Polarstern data) and only Polarstern data in the right panel. The vertical gray line shows the
location of the SIE (distance to SIE = 0 km). Background information only from limited cruise tracks (right plot) does not well represent combinations of long-term,
year-round environmental conditions in the SO and is inevitably spatiotemporally biased towards the near/north of SIE, low SIC, and environmental conditions in
summer. In contrast, the spatiotemporally sampled background information from the whole SO (left plot) shows less biases and broader coverage of environmental
combinations. Polarstern sightings (black points) cover only part of the range of environmental conditions suitable for the species (right), while the use of
crowdsourced data from other sources (left) covers a more comprehensive range of suitable environmental conditions. This disparity of environmental coverage is
more evident for HWs observations (see Supplementary Figure 39 for species-specific observations).

types (and, more importantly, the possible complementary in the
n-dimensional environmental space) supports that integrating
data from visual and PAM dataset in a single SDM (e.g.,
Thompson et al., 2015; Frasier et al., 2021) can better reflect the
year-round niche preference of baleen whales in the SO. This will
help to avoid the effect of data characteristics on the reliability of
model outputs, aiming at a better understanding of the ecology
of baleen whales in the SO. Exploiting PAM data, both by itself as
well as in combination with visual sightings, will be the topic of a
forthcoming manuscript.

Dynamic Species Distribution Models Using
Presence-Only Data
Matching observations and environmental conditions
spatiotemporally, essential in dynamic SDMs, can be
easily achieved for presence-absence or abundance data, as
environmental conditions at time and location of detections
and non-detections can be estimated in situ or using satellite
images. However, background information in presence-only
SDMs does not have a time attribute, making it challenging to
temporally match them with the environment. Some authors
assigned time for background information by using the
location/time of observing other species in a higher taxonomic

level (target-group background “TGB”; e.g., Reside et al., 2010)
or restricting background selection to the location/time of
cruise tracks (Bombosch et al., 2014). The TGB was initially
proposed to correct for spatial sampling bias (Phillips et al.,
2009) by obtaining similarly biased occurrences and background
information under strict assumptions. In essence, (a) sampling
bias needs to be analogous for all species; (b) occurrences
for other species were observed with the same method; (c)
focus species is likely to be equally observed in all locations,
and, importantly; (d) background information is sufficient to
characterize the environment in the study area (Phillips et al.,
2009; Merow et al., 2013; Yackulic et al., 2013; El-Gabbas and
Dormann, 2018). These assumptions are hard to meet in dynamic
oceanic environments.

In large and highly dynamic study areas like the SO, using
background information from limited TGB data or cruise
tracks can result in under-fitted models that do not well-
describe species’ niches and high prediction uncertainty due
to extrapolation (Vollering et al., 2019; see Figure 8 and
Supplementary Figure 39 for more details). Using cruise
tracks to guide background selection can furthermore be
considered as inferring absences from spatiotemporally-limited
cruise tracks, making the use of presence-only modeling methods
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(e.g., Maxent) invalid with such artificial absences (Guillera-
Arroita et al., 2014). Therefore, in situations where only
presence-only data exists, we recommend thoroughly sampling
background information in both time and space. Nevertheless,
this may yield an enormous amount of data when studying the
daily distribution over a large study area, which requires high
computational hardware specifications.
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